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EVALUATION OF SEVERAL APPROXIMATE METHODS FOR CALCULATING

THE SYMMETRICAL BENDING-MOMENT RESPONSE OF FLEXIBLE

AIRPLANES TO ISOTROPIC ATMOSPHERIC TURBULENCE

By Floyd V. Bennett and Robert T. Yntema

SUMMARY

Several approximate procedures for calculating the bending-moment

response of flexible airplanes to continuous isotropic turbulence are

presented and evaluated. The modal methods (the mode-displacement and

force-summation methods) and a matrix method (segmented-wing method) are

considered. These approximate procedures are applied to a simplified

airplane for which an exact solution to the equation of motion can be

obtained. The simplified airplane consists of a uniform beam with a

concentrated fuselage mass at the center. Airplane motions are limited

to vertical rigid-body translation and symmetrical wing bending deflec-

tions. Output power spectra of wing bending moments based on the exact

transfer-function solutions are used as a basis for the evaluation of

the approximate methods. It is shown that the force-summation and the

matrix methods give satisfactory accuracy and that the mode-displacement

method gives unsatisfactory accuracy.

INTRODUC TI ON

Current analytic methods of studying airplane responses to con-

tinuous atmospheric turbulence make use of the techniques from random-

process theory. These techniques provide a compact description of the

statistical properties of the turbulent velocities in a form suitable

for response calculations. The significant characteristics of turbu-

lence velocities for this purpose are contained in power spectra and

appropriate cross-spectra. These spectra are then used along with the

appropriate airplane frequency-response or transfer functions for deter-

mination of the airplane response.

The early applications of this technique described the turbulence

as a one-dimensional random process varying along the flight path of the

airplane but uniform along the wing span. (See, for example, ref. i.)

In recent studies the variation of turbulence across the wing span
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(two-dimensional or isotropic turbulence) 1_asbeen shownto give rise to
significant effects for large flexible airplanes. (See, for example,
ref. 2. )

In general, the solution of the dynamic equations of motion for the
transfer functions requires the use of approximate procedures. It is
the purpose of the present report to investigate the accuracy of several
of these approximate procedures usedfor calculating the bending-moment
transfer functions when applied to the case of a flexible airplane sub-
jected to two-dimensional turbulence. The approximate methods under
consideration are the mode-displacement me-_hod,the force-summation
method, and a matrix method (segmented-wing method - also referred to as
lumped-parameter method). An account of these approximate procedures
can be found in reference 3, which also ci;es other references.

The approximate procedures under inve_tigation are applied to a
simplified airplane for which an exact solution to the equation of motion
can be obtained. These exact-solution results serve as a basis for the
evaluation of the approximate methods. Fo:_purposes of comparison,
results are also calculated for the flexible airplane traversing one-
dimensional turbulence and a rigid airplane traversing one- and two-
dimensional turbulence.

The simplified airplane consists of a uniform beamwith a concen-
trated fuselage mass at the center. Airpl:ine motions are limited to
vertical rigid-body translation and symmetcical wing bending deflections
only. Aerodynamic forces are based on strip theory and include the
effects of unsteady lift associated with t_e gusts and the resulting
wing motions.

A secondary purpose of this report is to indicate someeffects of
spanwise variations of turbulence in addition to those given in refer-
ence 4. This purpose is accomplished by c_mparing mean-squarebending-
momentresponses of various airplane confi_urations to one- and two-
dimensional turbulence. The airplane configurations are defined by the
ratio of fuselage massto total mass.

SYMBOLS

b

C(k)

wing span, ft

generalized Theodorsen function

wing lift-curve slope per rsdian



c local wing chord, ft

average chord, ft

C_c_
section lift-curve slope per radian

E1 bending stiffness of wing, ib/sq ft

F(k), G(k) real and imaginary parts of generalized Theodorsen function

C(k), respectively

H(k) transfer function of bending moment for one-dimensional

turbulence

H(k,_), H(k,q+e) influence transfer functions of bending moment for

two-dimensional turbulence

H 0 transfer function of bending moment resulting from vertical

wing motion in rigid-body mode

H I transfer function of bending moment resulting from vertical

wing motion in fundamental wing bending mode

H 2 transfer function of bending moment resulting from external

gust loading

KO(), KI( ) Bessel functions of second kind, order 0 and i

k reduced frequency, m
2U

kl reduced frequency associated with fundamental wing bending

el@
mode,

2U

: j 2EI
k a

(b/2)

L scale of turbulence, ft

_g gust load per unit span

_i inertia load per unit span
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_m

MB

MB, s

m(y)

mF

mw

mt( )

mt

q

R

Re( )

S

S

t

U

W

Y

Ycp

Ycp

Ycp b/2

aerodynamic load per unit sp&n due to wing vertical motion

bending moment, ft-lb

i w
bending moment due to sharp-_dge gust, _ CL qSYcp _, ft-lb

wing mass distribution, slug_;/ft

fuselage mass, slugs

wing mass, Slugs

total airplane mass distributions, slugs/ft

total airplane mass, slugs

dynamic pressure, ib/sq ft

ratio of fuselage mass to wing mass,
mW I -_

designates real part of ( )

wing area, _b, sq ft

dimensionless scale of chordwise turbulence, _---_

time, sec

forward velocity, fps

vertical component of gust w_locity, fps

spanwise displacement, ft

dimensionless spanwise displacement, b}2

lateral ordinate of center o:; pressure, _ - Yl + _ '

Yl spanwise location of bending-moment station, ft
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z

n(e)

7n()

to( )

_l( )

P

o2

_m (k)

_w(k)

dimensionless spanwise location of bending-moment station,

Yl

b/2

vertical displacement, ft

dimensionless vertical displacement, z
c/2

gamma function (see eq. (13))

space function used in equation (9)

Dirac delta function

spanwise coordinates, ft

dimensionless spanwise coordinate,
b/2

variable of integration,

airplane mass parameter,

wing mass parameter,

fuselage mass ratio,
mt

BI - I], ft

CLPSC

_(i - _)

rigid-body mode

fundamental wing bending mode

air density, slugs/cu ft

mean-square deviation of bending moment, ib-ft

output power spectrum of bending moment

power spectrum of vertical gust velocity for one-dimensional

turbulence
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¢_n(k)

¢(k)

LD

m 1

I()

Subscripts :

f

I

n, m

R

Ra

r

power spectra of verti,:al gust velocity for two-
dimensional turbulen,:e

associated gust spectra (see ,_q. (12))

unsteady lift function for gu_t penetration (Sears function)

frequency, radians/sec

frequency associated with fun&amental wing bending mode,

radians/sec

unit step function

Notation:

11

[]

[]
[]

flexible airplane

imaginary component of complex variable

integers, O, i, 2,

real component of complex variable

Rayleigh

rigid airplane

complex conjugate

absolute value

square matrix

diagonal matrix

row matrix

column matrix

A dot over a symbol indicates a deriwtive with respect to time,

and a prime indicates a derivative with respect to y.
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BASIC INPUT-0UTPUT RELATIONS

Random-process techniques as applied to the gust-load problem are

discussed in many references. (For example, see refs. I to 4.) From

reference 4, the output spectra of bending moments are defined as follows:

For one-dimensional turbulence,

 m(k): l (k)l2%(k) (1)

where

output power spectrum of bending moment

K(k) transfer function for bending-moment response of airplane to

dontinuous sinusoidal gusts of unit amplitude and wave

length _c/k

%(k) input power spectrum of vertical gust velocity

For two-dimensional turbulence,

(2)

where

influence transfer function which represents the complex

amplitude of bending-moment response to continuous sinusoi-

dal gust of unit amplitude and wave length _c/k impinging

at station N (* indicates complex conjugate)

¢w(k,_l-_) input power spectrum of vertical gust velocity

It has been shown in reference 4 that equation (2) may be simplified

somewhat by a change of variable; namely, NI = 8 + N. Thus, performing

the integrations first over _ and then over 8, as shown in reference 4,

and restricting the system to the symmetrical response only yields

h _ e

¢MB(k) =I: Cw (k,8)dS,f_2b/2 _HR(k'_)HR(k'_+8) + Hl(k'_)Hl(k'_+e_d_

(3)



where HR( ) and HI( ) are, respectively, the real and imaginary

components of the symmetrical transfer functions.

The output spectra, defined by equatioms (i) and (3), can in turn

be used to calculate many other statistical quantities (see ref. 5);

however, the only other statistical quantity to be calculated herein is

the mean-square deviation of the bending moment. From reference 4, the

mean-square response is defined as

oo

o2 :/o (4)

TRANSFER FUNCTIONS

From simple beam theory, the basic differential equation of bending
motion is

Zg
dY 2 \ dy2/

(5)

where _i is the inertia load per unit span and _g and Zm are,

respectively, the aerodynamic loads per unit span due to the disturbing

gust and those due to wing vertical motions.

Solutions of equation (5) to obtain airplane motions and deflections

and, subsequently, the determination of the bending-moment transfer func-

tions are accomplished by an exact method, two modal methods (mode dis-

placement and force summation), and a matri_ method (segmented-wing

method).

All of the solutions are made for the simplified airplane, consisting

of a uniform beamwith a concentrated fuselage mass at the center, shown

in figure i. It is assumed that the airplane is restricted to vertical

motions only and, in addition, that the pitching motions be neglected.

Exact Method

Equation (9) is solved by means of the Laplace transform method to

obtain z" and, thence, the bending-moment influence transfer function

from EIz". A brief derivation of the exact analysis is given in

appendix A for one- and two-dimensional turbulence.



Modal Methods

The fundamental assumption in all modal methods is that the displace-
ment can be approximated by the superposition of a finite numberof nat-
ural or assumedmode shapes. This assumption allows equation (5) to be
replaced by a set of equations of modal motion which can be solved for
the displacement due to each mode. The bending-momenttransfer function
is then calculated by two methods: first, the mode-displacement method,
in which the bending momentis determined directly from the curvature
associated with the flexible mode-displacement response and, second,
the force-summation method, in which the motion and aerodynamic loadings
associated with the modal motions, rigid and flexible, are obtained first
and then integrated with the applied gust loading to obtain the bending-
momentresponse. Brief derivations of these modal analyses are given in
appendix B for one- and two-dimensional turbulence.

Matrix or Segmented-WingMethod

Equation (5) is integrated twice to obtain an integral equation with
z" as the unknown. In order to solve this integral equation, the wing
is divided into n - i segments; thus, the equation can be written as
an nth-order matrix equation.

Integrating matrices of the type given in reference 6 are used to
solve this matrix equation directly for z" and, thence, the bending-
momenttransfer function from EIz". A brief derivation of the matrix
method is presented in appendix C for one- and two-dimensional turbulence.

INPUTSPECTRA

The input spectra required by equations (I) and (3) maYbe approxi-
mated by several analytic expressions. (See ref. 7-) The expressions
used herein are:

For one-dimensional turbulence,

F
_w(k) = --slT1 + 3s2k 2

LII + s2k2 )2
+ a2+ (a26s2a2k2-+ s2k2) _3s4k41(w)2_ (6)
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For two-dimensional turbulence,

s/w\2kl + 3s2k2)%
02 KO(8_I + s2k2) +

i + s2k 2

2a2e2(a2 + 5s2k 2)

(a2 + s2k2) 2

(7)

where

dimensionless scale of turbulence, L

longitudinal scale of turbulenc_

arbitrary constant used to select frequency at which spectrum

begins to deviate from an inverse second-power variation

with frequency and begins to (ecrease more rapidly

On the basis of the measurements reported i,L reference 7, a value for

a of 50 appears appropriate and is used in the present calculations.

(Note that eq. (7) reduces to eq. (6) as 8 _ 0.)

DETERMINATION OF OUTPUT SPECTRA

For one-dimensional turbulence, the output spectrum is obtained

simply and directly from equation (i) for all methods considered. For

two-dimensional turbulence, however, it should be noted from equation (5)

that a double integration of the product of the input spectrum and the

convolution of the transfer function is necessary before the output

spectrum can be evaluated. For the exact ald.matrix methods these inte-

grations were performed numerically because of the complexity of the

integrands. For the modal methods, however, equation (3) is simplified

by the separation of the frequency and space variables in the transfer

function; that is,
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r-l

H(k, _) = f Hn(k)Fn(_)

n--O

(9)

where r indicates the number of modes, including rigid-body modes, in

the analysis. This separation of variables reduced equation (3) to the

following form:

J J

CMB (k) = f f Re[Hm(k)Hn*(k)]¢Wmn (k)

n_O m=O

where for mode-displacement method

and for force-summation method

and

j =r-I

j -- r

(io)

b

¢Wmn(k) =/0 r(e)Cw(k'e)de (ii)

r(e) O_b12 7m(n)Tn(n+e)an
(12)

The force-summation method contains more terms than does the mode-

displacement method due to the externally applied gust load. (See

appendix B.) It should also be noted that the transfer function Hn(k )

is not identical in the two methods; for example, see equations (Bllb)

and (Bl5b).

The integrand of equation (12) is a relatively simple function and

in most cases is integrated in closed form. However, the integration

indicated in equation (ll) is performed numerically because of the com-

plexity of the input spectrum.

SCOPE OF CALCULATIONS

Output spectra and mean-square values of the bending-moment response

at the wing root and the 0.75-semispan station for one- and two-dimensional
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turbulence have been computedfor three co_'igurations of the simplified
airplane (fig. 1). These configurations, d_:fined by the variable _,
the ratio of fuselage massto total mass, are:

= 0 (all mass uniformly distributed across the wing span)

= 0.5 (one-half the total mass concentrated in the fuselage and
one-half uniformly distributed across the span)

= 0.8 (80 percent of the mass conceJltrated in the fuselage and
20 percent distributed uniformly across the span)

In all computations, the aspect ratio was assumed to be 12.0, and

the dimensionless scale of chordwise turbulence s = L was assumed to

be lO0. In order to facilitate the computations, the reduced frequency

k I associated with the first free-free sy_etrlcal mode of the dynamic

system involving wing bending and the wing _erodynamic mass parameter
fl

_w were assumed to be invariant with _. hese assumptions reduced the

computational labor appreciably but resultecL in each of the three air-

plane configurations having a different total airplane mass. Since,

however, the purpose of this study was to evaluate methods rather than

to show trends, this difference was not considered a serious drawback.

The values chosen for the constants, kI = 0.2 and _w = i00, cor-

respond to those of an aircraft which has a high degree of wing flexi-

bility and low aerodynamic damping. Such a system, it was felt, would

provide a severe test of the adequacy of the approximate methods to be

evaluated. Since the wing mass parameter was held constant, the airplane

aerodynamic mass parameter varied with _ - that is, for _ = O, _ = 100;

for _ = 0.5, _ = 200; and for _ = 0.8, _ = 500.

Aerodynamic strip theory was used in a_l of the studies since a more

refined theory would have further complicated the already complex solu-

tions and probably would not have influencel appreciably the conclusions

regarding the relative accuracy of the various methods. Also, the

unsteady lifts associated with the gusts anL the resulting wing motlons

were included in the analyses.

All the results presented herein are i _ nondimensional form_ The

output bending-moment spectra and the mean-_quare results have been

divided by the square of the bending moment due to a sharp-edge gust of

unit vertical velocity which is constant across the span.

The modal methods require a finite numoer of modes to approximate

the airplane motions. For the mode-displacement method, rlgid-body
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translation and the first natural wing bending mode were used.

force-summation method, the following three approximations were

investigated:

For the

(i) Rigid-body translation and the first natural wing bending mode

(same as for the mode-displacement method)

(2) Rigid-body translation and a parabolic approximation to the

first free-free wing bending mode

(3) Same as approximation (2) except that the frequency associated

with the natural wing bending mode was used instead of the approximate

Rayleigh frequency

The matrix method requires that the wing be divided into a number

of equally spaced stations across the span in order to perform the

matrix integrations. For the present study, five such stations across

the wing semispan were used.

For purposes of comparison, bending-moment results were also calcu-

lated for the simplified airplane considered to be rigid. For these

calculations the force-summation method was used with the airplane motions

limited to rigid-body translation only. A brief derivation of this pro-

cedure is given in appendix D.

ACCURACY OF NUMERICAL INTEGRATIONS

Inasmuch as the integrations involved in calculating the two-

dimensional output spectra were performed numerically (see the section

entitled "Determination of Output Spectra"), a check on the numerical

accuracy was deemed necessary.

Exact Method

For the exact method a suitable check on the numerical accuracy of

the two-dimensional expression was obtained by calculating the one-

dimensional output spectra from the two-dimensional expression (see

eq. (3)) and comparing the results with those from the one-dimensional

expression (eq. (i)). This one-dimensional check calculation is obtained

by substituting _w(k) for _w(k,@) in equation (3). Thus, any dis-

crepancies between the results of the two procedures can be traced

directly to the numerical integrations of the two-dimensional expression.

A comparison of these results is given in figure 2.
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From part (a) of figure 2 it is evident that both methods give

nearly the same results for the spectra of root bending moment. It can,

therefore, be expected that the accuracy of the root-bending-moment

results for the two-dimensional gust structure are satisfactory.

From part (b) of figure 2 it is evident that both methods do not

give the same results for the spectra of benling moment at the 0.73-

semispan station. It can, therefore, be expected that the results at

the 0.75-semispan station for the two-dlmens[onal gust structure will

not be very accurate. The inaccuracy of theoe results can, in large

part, be attributed to the fact that the 0.75-semlspan station is located

between two of the equally spaced stations used in the numerical integra-

tion procedures. This location, unfortunateLy, places the numerous dis-

continuities in the slope of the transfer functions (see fig. 3) to be

integrated midway between the stations. At the time of this discovery

it was considered impractical to change to another spanwise station;

thus, the results at the 0.75-semispan station calculated by the exact

method will not be presented for the two-dim_nsional turbulence condition.

Modal Methods

For the modal methods the integrations to be performed in order to

evaluate the output spectra are defined by e_uations (ii) and (12). The

first integration, equation (12), is of a form which can be integrated

analytically or accurately by numerical procedures. Thus, the subsequent

integration, equation (ii), which is perform}d numerically, should also

be accurate.

Matrix Method

The numerical integrations used to calculate output spectra for the

matrix method are the same as those used in the exact method. Figure 5

shows that excellent agreement exists betweel the exact and matrix trans-

fer functions; thus, the numerical inaccuracies in this method are pre-

dominantly the same as in the exact approach. For this reason, the

matrix results at the 0.75-semispan station for two-dimensional turbulence

are not presented.

EVALUATION OF APPROXIMATE P {OCE_IRES

In this section the various approximate procedures are evaluated

from the output-spectra and mean-square bending-moment results for one-

and two-dimensional turbulence. In order to facilitate the discussion,

the approximate procedures are divided into %wo groups: first, the more
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accurate methods consisting of the force-summation method based on a

natural mode and the matrix method; second, several simplified modal

methods consisting of the mode-displacement method based on a natural

mode and the force-summation method based on a parabolic mode with the

corresponding Rayleigh-Ritz frequency and with the natural frequency.

For all solutions the resuits for the three model configurations

studied show the same type of comparison; thus, the output spectra are

presented for only one representative configuration, namely, _ = 0.5.

Force-Sunnnation and Matrix Methods

Statistical bending-moment results obtained by the force-summation

method using one natural mode and the five-station matrix method are

evaluated by comparison with the exact-method results. In order to per-

mit evaluation of the influence of the second symmetrical bending-moment

resonance peak on the results, the output spectra have been calculated

by the exact and the matrix methods over a larger range of reduced fre-

quencies than is usually considered necessary. The output spectrum for

the airplane assumed to be rigid is also presented for comparison.

Bending moment at the wing root.- Spectra of the bending moment at

the wing root for a one-dimensional gust structure are presented in

figure 4(a). It is readily apparent that both of the approximate methods

yield spectra which are almost the same as those for the exact-method

results. Also, the results for the rigid airplane agree very well with

the results for the flexible airplane calculated by the exact method for

small values of the reduced frequency where dynamic flexibility effects

are unimportant.

Spectra of the bending moment at the wing root are compared in

figure 4(b) for the case of a two-dimensional gust structure. The agree-

ment is again seen to be very good throughout the frequency range.

For both the one-dimensional and the two-dimensional gust structures,

the peak of second symmetrical bending mode, located at k = 1.12, is so

small that it is barely evident on the plots and, thus, has little effect

on mean-square results.

Bending moment at 0.75-semispan station.- Spectra of the bending

moment at the 0.75-semispan station for a one-dimensional gust structure

are compared in figure 4(c). The two approximate solutions agree very

well with the exact-method results. The force-summation solution, of

course, does not give the second-mode resonant peak, and the matrix

method gives it displaced to a somewhat higher frequency. In this high

frequency range there is no experimental confirmation of the shape of

the input gust spectrum; thus, the significance of the second-mode peak
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is questionable. For mean-square results th_s peak can be neglected,

but for higher statistical moments, such as _re needed to predict the

time expected to exceed a given bending-momelt level, these secondary

peaks may be important.

For the two-dimensional case it was found that the exact- and

matrix-method results for the 0.75-semispan _tation were inaccurate due

to numerical integrations. (See section entitled "Accuracy of Numerical

Integrations.") Hence, figure 4(d) presents only the force-summation

and rigid-airplane results. Since the numerical integration errors pres-

ent in the exact and matrix methods are not Iresent in the force-summation

method, there is no reason to believe that t_is method is any less accu-

rate for this case than for any other case c(nsidered. Figure 4(d) lends

support to this statement, by showing good agreement between the force-

summation method and the rigid analysis at low frequencies. It should
be remembered that the numerical inaccuracies in the exact and matrix

methods occurred in the determination of the output spectra and not in

the transfer-function calculations. Thus, as was shown in figure 3, the
matrix method yields excellent two-dimension_l transfer-function results.

Simplified Modal Methods

Statistical bending-moment results obtained by simplified modal

approaches are evaluated by comparison with the force-summation results

based on a natural mode. (This method has been shown to be accurate in

the preceding section.) The simplified modal methods consist of the

mode-displacement method based on a natural rode and the force-summation

method based on an approximate parabolic mode. Two different procedures

are used in the latter method: the Rayleigh-Ritz procedure in which the

Rayleigh frequency associated with the approximate mode is used, and the

modified Rayleigh-Ritz procedure in which the frequency associated with
the natural mode is used.

Bending moment at the wing root.- Spectla of the bending moment at

the wing root calculated by the modal methods for a one-dimensional gust

structure are shown in figure 5(a). Compare£ with the force-summation

method based on a natural mode, the mode-displacement method yields inac-

curate results in the low frequency range. _he force-summation Rayleigh-

Ritz approach based on the parabolic mode results in a shift of the res-

onance peak, as would be expected, because of the Ray!eigh frequency.

Although, this approach yields a fairly good result for the mean-square

bending moment, it would be a very poor choice if higher statistical

moments were desired. The force-summation mc_ified Rayleigh-Ritz approach

based on the parabolic mode is almost as accurate as the results when

the natural mode is used.

The results for the two-dimensional gust structure are presented in
figure 5(b). The same trends can be seen as for the one-dimensional case.
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Bending moment at the 0.75-semispan station.- Spectra of the bending

moment at the 0.75-semispan station obtained by the modal methods are

shown in figures 5(c) and 5(d) for the one- and two-dlmensional gust

structure, respectively. It is again apparent that the mode-displacement

method is very inaccurate in the low frequency range, whereas the force-

summation modified Rayleigh-Ritz approach is very accurate throughout

the frequency range shown. Results were not calculated by the force-

summation Rayleigh-Ritz approach based on the parabolic mode for this

station.

EFFECTS OF SPANWISE VARIATIONS OF TURBULENCE

In this section the effect of the spanwise variation of vertical

turbulence on the bending-moment response is assessed. First, the effects

on the output spectra are shown in figure 6. Part (a) of this figure

shows the spectra at the wing root as determined by the exact method.

For the configurations with _ = 0.5 and 0.8, it is apparent that the

main effect of the spanwise variation of turbulence is an appreciable

reduction in the bending-moment response as compared wlth the one-

dimensional case, particularly in the vicinity of the fundamental mode

resonant peak. For the configuration with _ = O, however, the two-

dimensional turbulence results in an increase in root-bending-moment

response because the response produced by the one-dimensional turbulence

is zero. Part (b) of figure 6 shows the spectra at the 0.75-semispan

station as determined by the force-summation method. (The exact-method

results have been shown to be inaccurate for this station because of

numerical integrations.) The same results are apparent at this station

as at the root station.

Second, the effects of spanwise variations of turbulence on the

mean-square bending-moment results are shown in figure 7. As would be

expected, the same effects shown on the spectra are further amplified

in the mean-square results; namely, a decreased response for _ = 0.5

and 0.8 and an increased response for _ = O. These results are in

agreement with those given in reference 4 for root-bending-moment

response.

Finally, the effects of spanwise variations of turbulence on an

amplification factor, defined as the ratio of the mean-square bending

moment of the flexible airplane to the mean-square bending moment of the

rigid airplane, are shown in figure 8. Again the same general conclu-

sions that were reached for the results shown in figures 6 and 7 are

evident. In addition, it should be noted in the low _ range (_ _ O)

that the trend of the amplification factors for the one-dimensional gust

is not the same as that for the more realistic two-dimensional gust.
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CONCLUSIONS

A study has been made of the relative accuracy of several approximate

procedures for calculating the symmetrical bending-moment response of

flexible airplanes to continuous isotropic t_rbulence. These approximate

procedures have been applied to a simplified airplane which consists of

a uniform beam with a concentrated fuselage mass at the center. The

conclusions drawn from this study are:

1. The force-summation method based on one natural bending mode gives

very good results compared with the exact solution.

2. The matrix method based on five stations across the semispan gives

very good results compared with the exact solution.

3. The mode-displacement method based o_ a natural mode yields inac-

curate results; however, this relatively simple method can be useful in

trend studies involving variations in wing fLexibillty.

4. The force-summation method, based on an approximate parabolic

mode and the Rayleigh frequency, loses littl_ accuracy in mean-square

results. However, the approximated natural Frequency causes a shift in

the fundamental mode resonant peak; conseque]tly, higher statistical

moments will be in appreciable error.

5- The force-summation method based on _n approximate parabolic mode

loses little accuracy if the natural frequency is known.

In addition to the evaluation of approximate methods, the effects

of spanwise variations of vertical gust velocity were also studied. From

this study it was found that the inclusion o_ spanwise variations of tur-

bulence results in a decreased response if mDst of the airplane mass is

in the fuselage and in an increased response if most of the mass is in

the wing. Also, the exclusion of spanwise v_riations of turbulence in

trend studies, such as the trend of amplification factor with mass ratio,

may lead to erroneous conclusions.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., October 24, 19}8.
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APPENDIX A

EXACT ANALYSIS FOR SIMPLIFIED MODEL SUBJECTED TO

SYMMETRICAL PART OF RANDOM-GUST DISTURBANCES

The differential equation defining the symmetrical motion of one-

half the simplified elastic airplane consisting of a uniform beamwith

a concentrated mass at its center and subjected to a concentrated sinus-

oidally varying gust at Station N (see fig. i) is

E e_tS(y__)
EIz"" = -m(y)_ - imFzS(y-0)2 - C(k)cz qc _ + _(k)cz qc U

(AI)

Equation (AI) is a specific form of equation (5). Since the applied

force is varying sinusoidally, the steady-state response also varies

sinusoidallywith the same frequency and thus a solution of the form

z(y,t) = z(y,_)e imt can be postulated. Nondimensionalizing equation (AI)

according to the definitions given in the symbol list yields

E"" _-A_F1 + - 2i
ka 2 u

k C(k) _ + 2__(k) w 5(_-_)

ka 2 _w ka2_w U

(A2)

By using the root boundary conditions z'(0) = z'"(O) = O, the solu-

tion of equation (A2) is obtained by the Laplace transform as

g = {(O----l)rcosha_ + cos a9--_k_(sinh a9- sin a_)_ +

2 [ a_ ]

_(k) W_inh a(9 _) -_"(O)(cosh a9 - cos ag) +

2a 2 aSka2_w U

sin a(_ - _)] ](y-_) (A3)

where
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a _-- 2i (kl= g _ ih
ka2

k2
k= R

ka 2

when the second and third derivatives of equation (A3) are taken and the

tip boundary conditions, _"(1) = _'"(1) = 0 are used, the unknowns

_(0) and _"(0) are determined. Substltu_ing these root conditions

into equation (A3) and taking the second derivative yield

ak a % U_D" a

F3( a2C2 - a_ C3) 1_ - DiEsinh a(1- _)+ s_n a(1- _)_ IC4( a2F1 - _F2)-a

(a _ C1)l + [sinh a(y- _)+ sin a(y- _)]I(Y-_)} (A4)F3 2C3 - a

where

Since

to put the expression for
final form of _" is

C1 = cosh a + cos a

C2 = cosh a - cos a

C 3 = sinh a + sin a

C4 = sinh a - sin a

F 1 = cosh a_ - cos a_

F2 = sinh ay + sin ay

F 3 = cosh a_ + cos a_

D = 2_k(1 + cosh a cos a) - a3(sinh a cos a + sin a cosh a_

a = g - ih is a complex number, further manipulations are required
_" into a form suitable for computation. The
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where

_-¢(k)
U

Hz,, =_c
2(QI2 + Q22)ka2%

_ .... (_ "_):_k,_) = Q9P57 + QIoP68 - QIIPI5 - QI2P_ + A 3 57 + hP6 c_)

.... (" ")1Hi(k,n) = QIoP57 - Q9P68 - QI2PI5 + QIIP2--_ + A3 gP57 - hP68 (c_)

and

Q9 = QIQ5 + Q2Q6

QI0 = Q2Q5 - QIQ6

QII = QIQ7 + Q2Q8

QI2 = Q2Q7 - QIQ8

% :_7_-_-_#_ +_7- _J68+_%3 -_-_-_

_l: -Pl3(g2_ h2)+ 2g_

(AS)
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:p24(g2_h2)+ 2ghP_- 2+ h2

_7= -PT_(g2-h2)+2g_

_8=_p_(g2_h2)_2g_Tf

d9 = g2 + h2

a11= P57(g2 - h2) - 2g_68 - a3

dl2: P68(g2 - h2)+ 2g_57 - _4

(m_+ _)
A} = g2 + h2

ql = i + PIP3 + P2P4

q2 = P3P5 + P4P6 + PIP7 - P2 P8

q3 = P4P5 - P3 P6 - P2P7 - PIP8

q4 = P2P3 - PIP4

•_ hP68 )
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P1 = cosh g cos h

P2 = sinh g sin h

P3 = cos g cosh h

P4 = sin g sinh h

P5 = sinh g cos h

P6 = cosh g sin h

P7 = sin g cosh h

P8 = cos g sinh h

P1 = cosh gy cos h_

P2 = _inhgf _i_ _

P3 : cos _ coshhf

P4 = sin g_ sinh h_

_5 = sinh g_ cos hy

P6 = cosh g_ sin h_

P7 = sin g# eosh h_

P8 = cos gy sinh hf

91 = cosh g7 cos hT

P2 = sinh g_ sin h 7

P5 = cos g7 cosh h 7

P4 = sin gT sinh h7

P5 = sinh g7 cos h 7

P6 = cosh g7 sin h W

P7 = sin g_ cosh hW

P8 = cos gT sinh h 7

PI = cosh g_ cos h_

P2 = sinh g_ sin D_

P5 = COS g_ cosh hc_

P4 = sin g_ sinh h_

P5 = sinh g_ cos h_

P6 = cosh g_ sin hc_

P7 = sin g_ cosh h_

P8 = cos g_ sinh hm

Pmn = Pm + Pn

P_"ff= Pm - Pn

_=l -q

The bending-moment response is obtained from

MB = EIz" - E" (A6)

Nondimensionalizing equation (A6) by the bending-moment response due to
a sharp-edge gust yields

MB, 4(Q12+ Q2) op

= HR(k, 7) + iHI(k,_) (A7)

The bending-moment transfer-function response to a one-dimensional

gust field may be obtained from the two-dimensional transfer function as
follows:

1

H(k) =f0 H(k,_)d_ (A8)
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Integrating equation (A8) yields

H(k) = HR(k) + Jill(k)

where

(A9)

HR(k ) = 1 Q9P57 + QI 68 - QIIPI3 - QI2P_-$ +
g2+ h

and

g2 + h IOP57 - Q9P68 - QI2PI3 + QIIP2-$ +

PI3 = gP57 + hP68

_2-J= gP68 - hP57

I

P57 = gPi-3 + hP24

P68 = gP24 - hP_

P57 = gP_ + hP24

P68 = gP24 13

All other terms are as defined after equatior (A5) for the two-d_nensional

case.
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APPENDIX B

MODAL ANALYSES FOR SIMPLIFIED MODEL SUBJECTED TO

SYMMETRICAL PART OF RANDOM-GUST DISTURBANCES

In this appendix, solutions of the differential equations defining

the symmetrical motion of the simplified model illustrated in figure i

are obtained by two modal techniques, namely, the mode-displacement

method and the force-summation method (ref. 3). Within the framework

of these two methods, solutions are obtained by the Rayleigh-Ritz pro-

cedure based on an exact free-free bending mode, and, in addition, for

the force-summation method, on an approximate parabolic mode.

Displacement Analysis

The determination of modal deflections is a common initial step in

both the mode-displacement and the force-summation methods. The deflec-

tion expressions are a function of mode shape and thus give different

results depending on whether exact- or approximate-mode shapes are

employed.

The Rayleigh-Ritz equations defining the displacement in the assumed

modes of an unrestrained elastic airplane subjected to an arbitrary

external loading are given in reference 3. For the simplified airplane

of the present study restricted to vertical rigid-body displacements and

deflection in an assumed fundamental free-free symmetrical bending mode,

these equations can be written in the terminology of the present report
as

_b/2

cP' J-b�2 : Cna'cq u 'J-b/2"- + zl{ -

C_q _ [ b12
U d-b/2 w dy (B1)

2 r'b/2 f,b/2
d -b/2 dy =

c_,_q c(k) _ f,b/2
u u _-b/2 W_'l(Y)dY

(s2)
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where

z o generalized coordinate for rigid-body translation

zI generalized coordinate for first free-free wing bending mode

W symmetrical part of complex amplitude of gust velocity

In writing these equations, the vertical displacement at any point on

the wing was expanded in terms of the rigid-_ody vertical-motion mode

and some mode _l(y), representative of the _undamental free-free mode

of the simplified airplane, as

z = z0 + Zl_l(y) (BS)

It was further assumed that the mode _I(Y), whether exact or approximate,

satisfies the orthogonality relation with the rigid-body mode, or that

_b/2
b/2 mt(Y)_I(Y)dY = 0

If the second term of equation (B2) is multiplied and divided by the

expression d-b/2 rot(Y) [_l(y)] 2dy' it can be written as

Zl<

f_bbl
/2

_b/2 2

b/2 mt(y) [_l(y)] dy

_b/2
b12 (yl 2dy

If the square of the approximate Rayleigh frequency _Ra is substituted

for the term in braces, this expression becones

/_ b/2ZlmRa 2 mt (Y) [_I(Y)] 2dy
_0

Using this expression and nondimensionalizin_ equations (BI) and (B2)

give
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i {o - eic(k)
%k2U

(B4)

MI_I II kk_a2) = 4ikC(k)(K4_O_wkRa2 + K3_I) + _wkRa2U2_(k) Lg, i

(B5)

where

hl = i- _

K} : g z I(_ a2

l

i /_z g1(_)a_K 4 =

aNa_
kRa - 2U

i

Lg =/_ w dy
i

i

Lg,l =/_ W_l(Y)d9
1

mt(O)

Solving equations (B4) and. (B5) simultaneously for Zo and Zl

U_wkRa A k %kRa21 _ l=wk_a]

gives

(B6)
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where

lk = 8(K 3 - K 2'FkC(k)4]l_Ra21__2 - 2ilM (ii

Mlk2

k2

rj

kRa _

+

(B8)

If an exact free-free bending mode for the system is used rather

than an approximate shape, the Rayleigh frequency e_Ra is identical to

the exact fundamental-bending-mode frequency for the system e I and,

thus, kI = kRa. Where the exact frequency is known but the exact mode

is unknown, an increase in accuracy can norrmlly be obtained by using

the exact frequency in place of _a" This procedure is referred to as

a modified Rayleigh-Ritz approach in the present report.

Bending Moments Due to a Two-Dimensiox_al Gust Distribution

Mode-displacement method.- In the mode.displacement method, the

bending moment is defined by simple beam theory as

In the present study,

thus,

or

r-i

MB = EI(Yl)Z Zn[n"(Yl)

n=O

EI is a constant ant. _0"(yl)

MB= EIzI_I"(Yl)

.B-

(B9)

is equal to zero;

(BlO )

(BlOb)
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Dividing equation (Bl0b) by the bending moment due to a sharp-edge

gust and substituting equation (B7) for _i give

MB - HoLg + HILg,I (Blla)

MB, s

where

H 0 = 2iK 4

H I =
k 2 kC(k)

2i

hlkRa 2 _wkRa 2 kRa2_c p A J

(Bllb )

If the procedure described in reference 4 is used_ the spectrum of the

output bending-moment ratio is written as

MB,s)

(B12)

where

2 i-8

_Wmn(k) :$0 @w(k'@)d8 $-I 7m(_)Tn(_+8)d_
(Bz3)

and

Equation (BI3) is a slightly modified version of equation (ii).

Equation (BI3) can be used with either an exact bending mode or an

approximate mode which satisfies the orthogonality condition with the

rigid-body mode. Unless the second derivative of the approximate mode

is a very good approximation of the second derivative of the exact mode,

however, the bending-moment result cannot be expected to be very accurate.

Force-summation method.- In the force-summation method, the inertia

and the aerodynamic loading due to wing motions in the various modes are
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integrated tQgether with the external gust loading to obtain the desired
bending momentas follows:

b/2
MB =f (_i

" Yl

+ _m + _g)(Y- Yl)dY
(B14)

where _i and Im are the inertia and aerodynamic loadings associated

with the deflections of the rigid body and fundamental modes and _g is

the symmetrical part of the loading due directly to the gusts and they

are defined by the following equations:

_i = mt(y)_2(z0 + zI_I(Y))

cl cq + Zl_l(y))_m - C(k)( z0
U

c? cq

_g = _ ¢(klw
U

Substituting the previously derived expressions for Zo and _I

(eqs. (B6) and (BT)) into equation (BI4) and manipulating the result

gives, after dividing by the bending moment due to the sharp-edge gust,

M B

MB, s
- HoLg + HILg,I + H2Lg,2 (B15a)

where

H2 A = T 7 + iT 8

1

 'g,2:vy/%(- w d9

(BlSb)
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and

T I = --!--I (k2 + _)

kRa 2

T 2 =
kRa 2

•,=_[_,_o_-_c_-_0_-_ -
KRa

_5 = -_K49c--2--p+ l _2
kRJ kRa 2

T6 =_4 Yep _ _(i 2 _ ZJ
kRa 2

_ 4 K 2 ^" - kRa

_w

_a

i

T__ = __/_ _.(_)_
1
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1

When the procedure given in reference 4 is used, the spectrum of output

bending-moment ratio is written as,

MB,s)

-l_o12®woo(_)+ l_12®wz_(_)+_21-_®w22(_)+2Re(HoHl*)¢wol(k)+

where Zhe functions CWmn(k) are as defined in the preceding section
i

and 72(_ ) = _[(_ - _i)_(_-_i) + (-_ - _l)_(-_-yl_. Equation (BI6) is

an expanded version of equation (ll) and can be used with an exact bending

mode or an approximate mode which satisfies _he orthogonality relation

with the rigid-body mode.

Bending Moments Due to a One-Dimensionll Gust Distribution

Mode-displacement method.- In the mode-lisplacement method for the

one-dimensional gust distribution, the integ:als defining Lg and Lg,l

can be evaluated exactly. These integration_ yield

Lg =2w 1
Lg, l = 2wK 4

(BI7)

Substituting equations (BI7) into equation (1311) gives

MB

MB_s

- (2"o+ 2K4"_w (BI8)

Then the output bending-moment spectrum becomes,

(MB, s)2
= [12H012+ 2K4Hll 2 + _4:_e("0_l')] _w(k) (BI9)
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Equations (BI8) and (BI9) can be simplified somewhat by combining terms,

but this was not done since H 0 and H I for the two-dimensional case

had to be determined in any event.

Force-summation method.- In the force-summation method_ for the one-

dimensional gust distribution, the integral expression for Lg,2 evalu-

ated exactly yields

Lg,2= 9cpW (B20)

Substituting equations (B20) and (BI7) into equation (BI5) gives

MB l (_21)w(2Ho+2K4_i+YcpH_)
MB, s

The output bending-moment spectrum for the one-dimensional gust

distribution can then be written as,

_(k)

(_,_)_-[_l_01_+_ _ +_ _ + _4Re(_O_l*)+

4_cpRe (HoH2*)+ 4K4YcpRe (HIH2*)] Cw (k) (B22)



34

APPENDIX C

MATRIX METHOD FOR SIMPLIFIED MODELS SUBJECTED TO THE

SYMMETRICAL PART OF A RANDOM-GUST DISTURBANCE

The differential equation defining the symmetrical motions of one-

half the simplified wing-fuselage combination treated in this paper

(fig. l) and subjected to a sinusoidal gust velocity at station _ on

the span is given by equation (A2) as

_,,,,_ k2[i+ R_(_-o)]_.-2ik__c_LU_ + _ __8(_-_)
ka2 ka2 _w ka2Kw U

(cx)

Integrating equation (C1) twice by using two of the four appropriate

boundary conditions; namely _" = z'" = 0 et 9 = 1 gives

I }
(c2)

By definition

Using the boundary condition that the slope of the wing bending deflec-

tion at the fuselage center line (9 = O) must be zero for symmetrical

motions in this definition yields

foT0Y,,
Substituting equation (C5) into equation (C2) gives

+r_r__,,,_, +
2 ,.j9 V

\

8(.v-_)/d_ d.V (C4)w

mw U /
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Dividing the beam into n - I segments, equation (C4) can be written as
I I i

an nth-order matrix equation. Designating [I_ =k' [lID =k_ '

U fo ;o= , and _12] = as integrating matrices for the contin-

uous functions in equation (C4) and integrating the delta functions

exactly allows equation (C4) to be written as

I 1 w
ka 2 ka 2 _w

(c5)

Under the assumption of symmetrical bending deflections, the shear at

the fuselage center line must be zero; thus,

" ' = (_i + _m + _g)dy(EIz)y=O 0 fb/2
=_0

Equation (C6) can be written in matrix notation as follows:

(C6)

l

wkere LI] is a row matrix of _ntegrating factors for the range o to 1
and LI3/: L1cocci for n:5.

So_v_n_e_uat_on(C7)<or (_'Ot_"°"

: + + w_ 1
{_o} _ I_ - _i _ J _

where

<l : - II - 2im-_--_1

and [I] and [13]

[13],respectively.

are composed of identical rows of LIJ and of
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Sub st itut ing {Zo} from equation (C8)i.nto equation (C5) yields,

+-_i I] .- 2i k_ ]

after rearranging terms,

I i-

(c9)

From equation (C9), _" is obtained by inverting the matrix premul-

tiplying {_"} at any or all of the n stations due to a sinusoidal

gust of intensity w applied at any station _ on the wing. Note that

q need not be at the stations into which the wing is divided; it may be

anywhere on the wing. In the computations performed in the present

report, only 5 stations were used but i0 equally spaced values of

were required to obtain reasonable accuracy :n subsequent numerical

integrations.

In the computations, the following integrating inatrices from refer-
ence 6 were used:

[IJ - °'2 L 1 4 2 4 lJ
3

II1] -
(0.2) 2

24

2 24 44 88 34-

0 2 21 60 25

0 0 0 52 16

o o -i 6 7

0 0 0 0 0

FII2] - (o.2)2
24

0 0 0 0 0-

7 6 =i 0 0

L6 32 0 0 0

25 60 21 2 0

34 88 44 24 2
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The bending moment is obtained from

(ClO)

Nondimensionalizing equation (CIO) by the bending-moment response due to

a sharp-edge gust yields

ka2_ wMB _

W

_%,s 29cpU
{,,: _R(k,_)+ i_i(k,_) (Oil)

The bending-moment transfer-function response for a one-dimensional

gust field may be obtained by simple numerical integration over _ of

the two-dimensional transfer function; that is,

i

H(k) =fO H(k,£])d_ (C12)
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APPENDIX D

ANALYSIS FOR SIMPLIFIED RIGID MODEL SUBJECTED TO THE

SYMMETRICAL PART OF A RANDOM-GUS_? DISTURBANCE

In this appendix, an exact solution is made for the symmetrical

response of a simplified rigid airplane to random vertical gust excita-

tion. (See fig. I.) The basic differential equation defining vertical

motions of this system is

0 = _i + _m + _g (DI)

(which is a specific form of eq. (5)) where _i is the inertia loading

per unit span and _g and Zm are, respect_.vely, the aerodynamic

loadings per unit span due directly to the s_m_netrical part of the gust

and those due to wing vertical motions. Since the flexibility term is

missing in equation (DI), it can be solved exactly for the system motions.

Displacement Analys_s

Under the assumptions of the present st1_dy (see appendix B), equa-
tion (DI) can be rewritten as

mt(Y)So+ C_Sq_ {0 _'-b/2c_,oq_ ¢(k)dy-_0
(_)

If sinusoidal excitation is assumed, equatiol (D2) is solved directly

for the rigid-body displacement. This has been done in reference 3, and

in the terminology of the present analysis tle equation is written in
nondimensional form as

1[_ _(k) ]l 1_o:_ _+ 2ic_k)__]___lwd_
(D3)

Bending-Moment Analysis

The bending moment is obtained from the following simple integration
of the loadings (force-summation method):
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b/2

" Yl

(_)

where, for the rigid airplane,

Zi = _ _(Y)_2_O

c2 c(k)
e z qko -_-

=- _0Zm U

_g c_ qc_(k) w= U

Substituting equation (D3) into equation (D4) and dividing by the bending

moment due to a sharp-edge gust results in the following expression:

MB (DS)
MB, s - HoLg + H2Lg,2

where

_ !2_(k)i -H o

[k(_+ l>+ 2o(k)]2+

H2 = _cp

If the same procedure employed in the analysis for the flexible airplane

is followed in the analysis for the symmetrical response of the rigid

airplane, the spectrum of the output bending-moment ratio for the two-

dimensional gust distribution is

lOMB(k)] r

= 1_o12%oo(k)+le212%22(k)+2Re(Ho.T'{2*)_w20(k)

For the one-dimensional gust distribution - that is,

the span - equation (D6) reduces to

[_(k)]r
-I 1 + 2_12%(k)

(MB,s)2

w constant along

(O7)
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An exact solution can be obtained for the output bending-moment

spectr_ of a rigid airplane traversing a rsndom two-dimensional gust

field with the distribution characteristics defined by equation (7). The

solution_ however_ is highly subject to sma_l difference difficulties_
and since the functions involved have not been tabulated with a suffi-

cient degree of accuracy_ no results have been computed which may be

used as a check comparison on the numerical integrations performed.
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Figure i.- Simplified airplane subjected to sinusoidal gust velocity.
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18

16

14

12

_)MB(k) .I0

(MB,s)=

O6

0

One-dimensional expression
(For p. =0, spectrum is O)

_ 0 _=0_[] /.L = .5 Two-dimensionol expression
0 • : 8)

÷ +

I

..... r .....

(a) Yl=O.

Figure 2.- Output bending-moment spectra for one-dimensional gust tur-

bulence, obtained from the one- and two-dimensional turbulence

expressions.
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_)MB (k)

(MB,s) 2

.10 .15 20 25 .3£

(b) Yl = 0.75.

One-dimensionol expression
(For F. =0, spectrum is 0 )

p. = Two-dimensionol expression

F =

T

____/z =.5
= _

1.10 LI5 1.20 1.25

Figure 2.- Concluded.
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Yl = O; exact method.
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(b) Yl = 0.75; force-summation method.

Figure 8.- Comparison of mean-square bending-moment ratio for one- and

two-dimensional turbulence.
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